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sizes of the particles in the mixture.

DOI: 10.1103/PhysRevE.73.031407 PACS number�s�: 82.70.Dd, 61.10.Eq

I. INTRODUCTION

The mechanics and thermodynamics of suspensions com-
posed of colloidal particles with monomodal size distribu-
tions have seen extensive study. The prototypical model sus-
pension is composed of single sized hard spheres. The
development of experimental systems that are excellent ap-
proximations of hard spheres have greatly advanced our un-
derstanding of order-disorder phase transitions �1,2�, glass
formation �3–5�, and volume fraction dependencies of trans-
port properties �6–8�. Substantially less work has been car-
ried out on mixtures of well-defined particles. Particle mix-
tures are important for gaining an understanding of industrial
suspensions: cosmetics, ceramics, foods, and coatings. For
these applications, there is a desire to understand how par-
ticles of different size pack and how the microstructure in-
fluences the material properties of the resulting suspension.

One type of intensely studied mixture is a two component
particle-polymer mixture where an increasing concentration
of polymer will induce a gel phase transition due to attractive
depletion interactions between particles caused by an exclu-
sion of the polymer from the region between the particles
�9–14�. A more basic mixture is a two component system of
hard spheres differing significantly in size. Based largely on
expanding the understanding of depletion effects, there has
been increased theoretical and experimental work done on
binary mixtures over the past 15 years �15–24�. Research has
focused on understanding the dependence of mixture micro-
structure �15–21� and rheological properties �22–24� on com-
ponent volume fractions.

A suspension of monomodal hardcore particles of type 1
can be characterized by five variables: particle diameter d1,
standard deviation in size distribution �1, volume fraction
�1, and strength and range of attraction �1 and �1, respec-
tively. Introducing a second set of particles introduces a sec-
ond five variables d2, �2, �2, �2, and �2 plus cross terms
characterizing the strength and range of the interaction be-

tween particles of different size, �12 and �12. Due to the
difficulties of exploring a 12-dimensional space, limited
progress has been made in understanding the general prop-
erties of mixtures. Once again a natural starting point is mix-
tures of repulsive hard sphere particles where the variable
space is reduced to 3n where n is the number of discrete size
distribution and 3 represents the particle diameter, breadth of
the size distribution, and volume fraction of each component.
Even with hard spheres the variable space to explore is im-
mense. In this paper, our goal is to explore the angular de-
pendent scattering properties of suspensions containing mix-
tures of Brownian hard spheres and compare experimental
results with model predictions. This goal is motivated by the
need to use such models to analytically explore the effects of
introducing different component populations on a suspension
microstructure.

In the past, detailed studies of such systems have been
attempted by contrast matching the scattering of one compo-
nent to that of the solvent in order to mask its scattering
effects �15,18�. In this way the scattering of a second com-
ponent can be investigated in the context of the mixture. In
principle, for a binary mixture of particles of sizes 1 and 2,
one can measure the correlations between particle pairs 11,
22, and 12. Although conceptually straight forward, the de-
velopment of index matched systems is not trivial. In par-
ticular, the particles must have different compositions in or-
der to be matched by different solvents and this provides
ample opportunity to question the nature of the interactions
between the various particle pairs. Duits et al. �15� report
scattering from mixtures where the individual components
behave largely like hard spheres but where the structure of
the mixed suspension suggests that there is an unexpected
attraction between particles of different size. From the work
of Duits et al. and other work where partial structure factors
have been reported �16–18�, we can conclude that hard
sphere models used to calculate the partial structure factors
are incomplete or that there are experimental difficulties in
extracting partial structure factors with the solvent matching
method. Here we study the microstructure of mixtures of
hard spheres composed of the same material. As a result we
report total intensity and do not extract partial structure fac-
tors.
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Several authors have derived mathematical models that
address the angle and volume fraction dependence of scatter-
ing of multicomponent suspensions of hard spheres �25–29�.
In one approach, Ashcroft and Langreth calculate micro-
structures using the Percus-Yevick �PY� closure �25�. They
utilize solutions to the PY closure to extract partial structure
factors �correlations between pairs 11, 22, and 12� for the
calculation of total scattering from a binary mixture. König
and Ashcroft have recently extended this approach by solv-
ing for the partial structure factors of a ternary mixture �26�.
A second approach developed by Vrij and co-workers calcu-
lates total scattering without the extraction of partial struc-
ture factors �28�. In this approach, analytical solutions for the
scattered intensity are calculated for any multicomponent
mixture.

In this work we compare the predictions of these two
approaches with scattering from suspensions of binary mix-
tures of hard spheres determined experimentally. Below, in
Sec. II, we provide a background for predicting the scattering
from suspensions containing mixtures of particles followed
in Sec. III by a description of our experimental methods.
Section IV contains a discussion of how the models are fit to
the experimental data and conclusions are drawn in Sec. V.
We find the scattered intensity to be very sensitive to particle
size distributions at scattering vectors that probe density
fluctuations intermediate between the modal particle sizes.
We conclude that the angular dependence of the total inten-
sity is best modeled through the method of Vrij. Our results
show that this approach provides a near quantitative predic-
tion of the angle and volume fraction dependencies of the
total scattering from two different binary mixtures and a ter-
nary mixture.

II. MODELS

A. Scattering intensity

The scattering intensity for any p-component mixture is
given by the relation

I�q� = �
i,j=1

p

f if j
�ninjPi�q�Pj�q�Sij�q� + B . �1�

The first term refers to the intensity of the sample, Is�q�,
where f i are the scattering amplitudes at zero angle, ni are the
number densities, Pi�q� are the form factors accounting for
intraparticle scattering interference for particles of type i, and
Sij�q� are the structure factors accounting for interparticle
scattering interference between particles of type i and j. The
second term refers to background scattering, B. Background
scattering is subtracted off of the intensity by the scattering
of a reference. The variable q is the scattering vector �For
x-rays, q=4� /� sin�� /2� where � is the wavelength of inci-
dent x-rays and � is the scattering angle�. For a binary mix-
ture the scattering intensity of a sample is given by the sum
of three terms,

Is�q� = n1f1
2P1�q�S11�q� + n2f2

2P2�q�S22�q�

+ 2f1f2
�n1n2P1�q�P2�q�S12�q� . �2�

The first term is the scattering for the larger particles; the

second term is scattering for the smaller particles; and, the
third term is cross scattering between large and small par-
ticles. From this point on, the sample scattering subscript
will be dropped. I�q� will refer only to scattering from the
sample. The scattering amplitudes in x-ray scattering depend
on the volume of the scatter Vs,i and the electron scattering
length density contrast �	e between the scatter and the sol-
vent.

f i = Vs,i�	e. �3�

The partial structure factors are given by

Sij�q� = 
ij + Hij�q� = 
ij + �ninj�1/2�
0

�

4�r2hij�r�
sin�qr�

�qr�
dr ,

�4�

where 
ij is the Kronecker delta, Hij�q� are the interparticle
interference functions, and hij�r� are the total correlation
functions. The integration variable r is the radial distance
between two particle centers. The interparticle interference
functions are never dealt with directly and are instead related
to the Fourier transform of the direct correlation functions,
Cij�q�, through the Ornstein-Zernike �OZ� equation given
here for a multicomponent mixture:

�I + H�q���I − C�q�� = I . �5�

Solutions for the direct correlation functions can be obtained
by applying a closure relation that describes the particle in-
teraction potentials.

B. Ashcroft/Langreth model

Ashcroft and Langreth use the PY closure to derive an
exact solution for the direct correlation functions and partial
structure factors for a binary hard sphere mixture �25�. The
PY closure for a mixture relates the radial distribution func-
tion, gij�r�, to the direct correlation function, cij�r�.

gij�r��e−��ij�r� − 1� = e−��ij�r�cij�r� . �6�

�ij�r� are the pair potentials and � is 1 /kBT where kB is the
Boltzmann constant. The radial distribution functions are re-
lated to the total correlation functions by hij�r�=gij�r�−1.
Previous to Ashcroft and Langreth, Lebowitz worked out re-
lations for the direct correlation functions generalized to a
multicomponent mixture in the PY closure �30�. For a binary
mixture, the direct correlation functions are

− c11�r� = a1 + b1 + mr3, r 
 d1

− c22�r� = a2 + b2 + mr3, r 
 d2

− c12�r� = a2, r 

1
2 �d1 − d2� � � �7�

− c12�r� = a2 + �bR2 + 4m�R3 + mR4�/r, 1
2 �d1 − d2� 
 r



1
2 �d1 + d2� ,

where R=r−1/2�d1−d2�. Values for the coefficients ai, bi,
and m are given in Appendix A. Using the Lebowitz rela-
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tions, Ashcroft and Langreth derived expressions for the par-
tial structure factors for a binary mixture. By taking the Fou-
rier transforms of the direct correlation functions and its

relation to the interparticle interference function �see Appen-
dix A�, the partial structure factors are calculated directly
from Cij�q� through the following relations:

S11�q� =
�1 − n2C22�q��

�1 − n1C11�q� − n2C22�q� + n1n2C11�q�C22�q� − n1n2C12
2 �q��

,

S22�q� =
�1 − n1C11�q��

�1 − n1C11�q� − n2C22�q� + n1n2C11�q�C22�q� − n1n2C12
2 �q��

,

S12�q� =
n1n2C12�q�

�1 − n1C11�q� − n2C22�q� + n1n2C11�q�C22�q� − n1n2C12
2 �q��

. �8�

These partial structure factors are derived for a monodisperse
binary mixture and do not account for polydispersity.

The particle form factors Pi�q� for spherical particles are
given by

Pi�q� = 	3
sin�qdi/2� − �qdi/2�cos�qdi/2�

�qdi/2�3 
2

. �9�

One can account for modest polydispersity in particle size by
calculating Pi�q� for a size distribution, but assume S�q� re-
mains that for monodisperse particles. This is done here by
employing a Gaussian diameter distribution to calculate an
average form factor for a population of particles with mean
diameter di, and standard deviation �i. The integration vari-
able d is the variable diameter of a particle.

P̄i�q� =

� 1

�2��i
2
e�−�d − di�

2/2�i
2�d6P�q�dd

� 1

�2��i
2
e�−�d − di�

2/2�i
2�d6dd

. �10�

Prediction of the total scattering intensity requires measure-
ments of Pi by fitting with Eq. �10� to determine di and �i.
The total scattering is calculated using Eq. �2� with knowl-
edge of the component number densities and scattering am-

plitude. P̄i is used in Eq. �2� and the Sij’s are calculated
assuming the particles of type i are monodisperse with diam-
eters di.

C. Vrij model

Vrij and co-workers �28� use the matrix form of the OZ
equation �Eq. �5�� to transform the scattering intensity equa-
tion for a mixture to one dependent on the Fourier transform
of the direct correlation functions. The partial structure fac-
tors �Eq. �4�� may be written

Sij�q� = 
ij + Hij�q� = ���q��−1�I − C�q��ji, �11�

where

��q� = �
ij − Cij�q�� �12�

is the p� p determinant of the matrix �I−C�q�� and �I
−C�q��ji is the cofactor of the element 
ji−Cji�q� of this de-
terminant. By substituting Eq. �11� into Eq. �2�, the scattering
intensity becomes

I�q� = �− Df�q�����q��−1. �13�

The quantity Df�q� is the determinant of a �p+1�� �p+1�
matrix:

Df�q� = � 0 f j
�njPj�q�

f i
�niPi�q� 
ij − Cij�q�

� . �14�

Baxter showed that when the cij�r� have finite ranges and
tend to zero beyond distances r� �di+dj� /2, the cij�r� can be
truncated so that Fourier integrations are performed over a
finite range �31�. This allows the matrix �I−C�q�� to be fac-
tored into Qij�q� functions that are simpler in form than
Cij�q�,

�I − C�q�� = QT�− q�Q�q� , �15�

where

Qij�q� = 
ij − 2��	i	j�1/2�
sij

dij

qij�r�eiqrdr �16�

with limits of integration dij= �di+dj� /2 and sij= �di−dj� /2.
The functions qij�r� are a recasting of the direct correlation
functions. The matrix form of the OZ equation becomes

�I + H�q���QT�− q�Q�q�� = I . �17�

The Baxter condition leading to the truncation of cij�r� is
satisfied with the PY closure and the resulting functions qij�r�
are of the form

qij�r� =
ai

2
�r2 − dij

2� + bi�r − dij� , �18�

for sij
r
dij, where
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ai = �1 − �3 + 3�2dii�/�1 − �3�2, �19�

bi = − 2
3dii

2�2/�1 − �3�2, �20�

and

�� =
1

6
��

i=1

p

nidii
� . �21�

By the substitution of Baxter’s form of the OZ equation,
expressions for the determinants Df�q� and ��q� can be cast
in terms of �� �Appendix B�. The total scattering intensity is
calculated from Eq. �13�. The interested reader should con-
sult Vrij and co-workers �28,29� for a more detailed deriva-
tion and discussion of this approach.

In using the Vrij model, a Gaussian distribution was em-
ployed to account for the effects of polydispersity on the
scattered intensity. A total number density distribution func-
tion was constructed as the sum of the distributions for each
component:

n�d� = N�
i=1

p
xi

�2��i
2
exp
− �d − di�2

2�i
2 � . �22�

In the expression above, N is a normalization constant, xi are
the number fractions, and di and �i are the mean diameter
and the standard deviation of the ith component. All summa-
tions over d were thus changed to integrations upon imple-
mentation of the total number density distribution.

D. Comparison of model predictions

The Ashcroft/Langreth �A/L� and Vrij �V� models depend
on three parameters per component: di, �i, and �i. We are
interested in understanding how these parameters alter scat-
tering predictions within each model. Predictions of I�q� for
a two component mixture within each model are compared
where each parameter is varied systematically �Figs. 1–3�. At
a first glance, we noticed that both models make similar pre-
dictions for low q �q
2� /d1� and high q �q
2� /d2� but
differ significantly when probing intermediate q �2� /d1
q

2� /d2�, length scales between the average sizes of the two
components. This difference is discussed below.

In Fig. 1, predictions of I�q� as a function of qd1 where d1

is the larger particle diameter assess the effect of varying the
particle size ratio, �=d2 /d1. In Fig. 1�a� we show predictions
of the A/L model and in Fig. 1�b� we show predictions of the
V model. In both cases we have specialized the calculation
for essentially monodisperse suspensions ��1=�2=0.05� and
�1=�2=0.2. As � increases we see systematic suppression in
I�0� while the magnitude of the second peak �at qd1�11�
increases. At higher q, the details of I�q� are complex func-
tions of � for both models.

The effect of polydispersity is explored in Fig. 2 where
we compare I�q� with �1=�2=0.2 and �=0.25 for different
values of �=�1=�2. We show four curves, �=0.001 �Fig.
2�a�� and �=0.1 �Fig. 2�b�� in both models. When �
=0.001, the two models show excellent agreement at high
and low q. As we raise the polydispersity, slight differences

in I�q� emerge in the high and low q limits. Scattering peaks
show a slight spreading in the V model. It is also apparent at
high and low q that the scattered intensity in the V model is
shifted up compared to Fig. 2�a� where predictions superim-
posed. These subtle differences can be attributed to the more
complete inclusion of the effect of polydispersity in the scat-
tering predictions of the V model, while polydispersity is
only included in P�q� in the A/L model. Calculations in the
A/L model become unwieldy to include the effect of poly-
dispersity in the partial structure factors. Vrij does not calcu-
late the component average form factors or partial structure
factors directly, but uses the matrix form of the Ornstein-
Zernike equation and Baxter’s approximation of the direct
correlation functions to derive one scattering intensity equa-
tion for any multicomponent suspension once the total num-
ber density distribution is known. This simplifies the scatter-
ing equation and includes the total effect of polydispersity.

Polydispersity, however, does not explain the different
scattering predictions at intermediate q. The different predic-
tions for scattering around the second peak are unaltered as
polydispersity is varied. The fact that the two models do not
superimpose as �→0 shows that polydispersity does not ex-
plain the different predictions for 2� /d1
q
2� /d2.

We are also interested in how the models predict changes
in scattering as a second component is added to the suspen-
sion. In Fig. 3 we show model predictions as a second com-
ponent �2 is added to a single component suspension where

FIG. 1. Scattered intensity as a function of qd1 holding constant
�1=�2=0.2 and �i=0.05 while varying size ratio �=d2 /d1 as pre-
dicted in �a� the A/L model and �b� the V model.
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�1=0.2 and �=0.05. The models predict the same scattering
curves for a single component suspension ��2=0.0�. As a
second smaller component is added to the suspension, the
two models predict opposite effects on scattering for inter-
mediate q. In the A/L model, the scattering intensity of the
second peak increases, while in the V model, the second
peak decreases. The peak also shifts to higher q in the V
model. Results from both models rejoin at high q when prob-
ing length scales smaller than the size of both particles. Scat-
tering at high q is mostly due to intraparticle scattering ac-
counted for in P�q�. It is believed that the difference between
the two models lies in the method used to account for inter-
particle scattering interference summarized by the partial
structure factors. In addition, scattering intensity for both
models superimpose in the dilute limit ��1=�2�0.05� where
the interparticle scattering interference is negligible and in-
traparticle scattering dominates �results not shown�. This ob-
servation provides further evidence that these models differ
in the way they include interparticle scattering interferences.

III. EXPERIMENT

A. Particle synthesis

Silica particles were synthesized by the base catalyzed
hydrolysis and condensation of tetraethylorthosilicate ac-

cording to the method of Stöber et al. �32�. A seeded growth
technique originating from Bogush was used to increase par-
ticle size �33�. Particles were coated with hydrophobic octa-
decyl chains through an esterification reaction of surface si-
lanol groups with stearyl alcohol. Once the reaction was
completed, excess stearyl alcohol was removed by rinsing
with chloroform followed by centrifugation and decantation.
Coated particles were dried to ensure the removal of chloro-
form. Particle sizes of 44±4 nm, 86±5 nm, and 196±9 nm,
as determined by scanning electron microscopy �SEM� and
transmission electron microscopy �TEM�. measurements,
were synthesized to make single component suspensions, bi-
nary suspensions with size ratios �=d2 /d1 of 0.22 and 0.51,
and one ternary suspension with d2 /d1=0.51 and d3 /d1
=0.22. Coated particles were suspended in cis/trans decalin
purchased from Sigma-Aldrich. Single component and bi-
nary mixture suspensions were made by weighing out known
masses of single component stock suspensions and diluting
to the desired volume fraction. Stock suspension volume
fractions were determined by dry weights after evaporation
of decalin from a known mass of sample using a particle
density of 1.8 g/cm3.

B. USAXS

USAXS was performed at the 33ID-D beam line UNI-
CAT facility located at the Advance Photon Source, Argonne

FIG. 2. �Color online� A comparison of the effect of polydisper-
sity on the scattered intensity between the A/L model and the V
model for �a� �i=0.001 and �b� �i=0.1 while holding �1=�2=0.2
and �=0.25.

FIG. 3. �Color online� A comparison of the effect of a second
component on the scattering intensity between the A/L model and
the V model holding �1=0.2, �i=0.05, and �=0.25.
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National Laboratory. The instrument employs a Bonse-Hart
camera and a double-crystal Si�111� optics to extend the
range of measurements to lower scattering vectors. A pair of
horizontally reflecting crystals enabled effective pinhole col-
limation removing the need for slit desmearing. An absolute
calibration converts scattering intensity from counts per sec-
ond to absolute units of cm−1 through knowledge of the
sample thickness along the path of the beam. Samples were
loaded in custom made aluminum cells. Two kapton polyim-
ide slides sealed the sides of the cell chamber using epoxy
perpendicular to the beam path. The beam path length was
approximately 1 mm. Measurements on each sample were

taken over a period of 30 min. Decalin is considered a non-
scatter; therefore, the background intensity was accounted
for by measuring scattered intensity of an empty cell en-
closed by two kapton polyimide slides. The scattering inten-
sity of the empty cell is subtracted off of the scattering of the
sample leaving only scattering due to the silica nanoparticles.
The background intensity is dependent on the operation of
the instrument and was of the order of 102 cm−1.

C. Hard sphere behavior

Single component suspensions are created in terms of par-
ticle volume fraction �. The scattering intensity �Eq. �1�� in
terms of particle volume fraction is written

I�q� = ��Vs�	e
2�P�q�S�q� .

In the dilute limit, the structure factor goes to unity since
particle positions are uncorrelated and the scattering is domi-
nated by intraparticle scattering. As a result, the intensity for
a dilute suspension is given by

I�q� = ��Vs�	e
2�P�q� . �23�

The degree that the experimental system behaves as hard
spheres can be assessed by a comparison of experimental

TABLE I. Particle diameter and standard deviation.

Size �nm�
Method d1

a �1
b d2 �2 d3 �3

SEM/TEM 196 9 86 5 44 4

Fitting 197 10 87 5 45 4

Guinier 195 N/A 93 N/A 48 N/A

adi is the particle diameter of particle type i.
b�i is the standard deviation in the size distribution for particle type
i.

FIG. 4. �Color online� Experimental scattered intensity ����� and model fits �solid line� �Eq. �23�� of dilute suspensions ��i=0.05� for
particle diameters �a� 44 nm, �b� 86 nm, and �c� 196 nm utilizing an average form factor with a single size distribution, and �d� 196 nm with
two size distributions.
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structure factors to theoretical hard sphere structure factors
for a monodisperse system. Experimental structure factors
for concentrated suspensions �cs� are calculated by dividing
the intensity of a concentrated suspension by the intensity of
a dilute suspension �ds�. The structure factor for the dilute
suspension goes to unity leaving S�q� for the concentrated
suspension

S�q� =
Ics�q,�cs�
Ids�q,�ds�

�ds

�cs
, typically �ds � 0.05. �24�

D. Electron contrast

While absolute knowledge of the scattering amplitudes
are not necessary to determine structure factors for mono-
modal particle size distributions, as indicated in Eq. �1�, ab-
solute scattering from mixtures requires knowledge of f i. In
particular, our application of the Vrij model assumes that
electron density contrasts �	e of all particles are the same.
We expect the contrast to depend only on the composition
and to be independent of particle size. Two methods are used
to estimate the contrast. In the first method, the component
contrasts are obtained by fitting experimental absolute inten-
sities of single component suspensions to Eq. �24� utilizing

TABLE II. Experimental contrast and standard error.

Method

Contrast �1011 cm−2�

�	e,1
a se,1

b �	e,2 se,2 �	e,3 se,3 Ave �	e se

Fitting 1.0 0.1 1.0 0.1 1.1 0.2 1.03 0.06

Guinier 1.1 N/A 1.1 N/A 1.0 N/A 1.06 0.05

a�	e,i is the electron density contrast of particles of size i.
bse,i is the standard error in �	e,i.

FIG. 5. �Color online� Experimental structure factors are indi-
cated by markers for single component suspensions, �a� 44 nm, �b�
86 nm, and �c� 196 nm, at various volume fractions. Theoretical
hard spheres S�q� are drawn through the data points for volume
fractions determined from dry weight measurements.

FIG. 6. �a� The scaling prefactors Ai are plotted for single com-
ponent suspensions with respect to the volume fraction. Dashed
lines indicate the mean value. �b� Mean prefactors are plotted with
respect to particle volumes. The solid line shows the linear scaling
of the prefactor with a particle volume.
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Eq. �10� for an average form factor and theoretical hard
sphere structure factors calculated in the PY closure. A scat-
tering prefactor, Ai=Vs,i�	e

2 is calculated from the fitting pro-
cedure and is plotted versus particle volume to obtain an
average contrast for the silica-decalin suspensions.

In the second method, Guinier’s law is used to measure
the contrast. Guinier’s law requires single particle scattering
and is only applicable in the dilute limit where particle po-
sitions are uncorrelated. Since the particle positions are un-
correlated, scattering interference between particles is inco-
herent. Guinier’s law applies in the limit qdi /2�1. In this
limit, the structure factor goes to unity and the form factor is
well approximated by P�q�=exp�−q2rg

2 /3�, where rg is the
particle’s radius of gyration. A Guinier plot is constructed by
plotting the logarithm of I�q� versus q2:

ln I�q� = ln��Vs�	e
2� −

q2rg
2

3
. �25�

The contrast is estimated from the intercept as q→0 and
knowledge of the volume fraction and the particle volume. A
Guinier plot also provides an estimate of particle size where
the radius of gyration is related to a particle diameter by

2rg = d�3
5 . �26�

Guinier radii can be compared to SEM and TEM direct mea-
surements to support contrast estimates.

A third method for determining �	e is to us the method of
Porod when in the large q limit, S�q�→1 and P�q��1/q4

�34�. In our work, this method was not applied because ex-
perimental scattering did not extend into the high q range
due to instrumental limitations.

IV. RESULTS

A. Single component suspensions

Scattering from single component suspensions were used
to determine mean particle diameters and standard deviations
in particle size distributions based on model fits to the form
factor and, at higher concentrations, to validate hard sphere
behavior by an analysis of the structure factor. Figure 4 dis-
plays fits to the scattered intensity for dilute suspensions us-
ing average form factors �Eq. �10��. Experimental scattering
is fit to the scattering equation using a least squares regres-
sion analysis to minimize the total error by altering fitting
parameters: particle size, standard deviation, and the con-
trast. Particle diameters and standard deviations obtained
from fits under dilute conditions are tabulated in Table I.

For the 196 nm particles, model form factors for a mono-
model particle size distribution give a poor fit at small scat-
tering angles. We interpret this as arising from the presence
of a small number density of aggregates. While the origin of
these aggregates is unknown, we believe they form during
the synthesis or coating process. These aggregates do not
pose a serious threat to the analysis of the mixtures due to
their very low number density �i.e., they are always dilute
relative to the 196 nm diameter particles�. However, these
aggregates have a large impact on scattering at low q. The
scattering effects of the aggregates can be accounted for by
including a second size distribution in the average form fac-
tor �Fig. 4�d��. Assuming that the scattering from the 196 nm
diameter particles suspension is composed of 196 nm par-
ticles and a second larger size distribution, we estimate that
the larger particles are composed of aggregates with a mean
diameter of 530 nm with a standard deviation of 360 nm. The
relative number density of the aggregates compared to the
196 nm particle is 0.008. Shown in Fig. 4�d� is the form
factor fit for a combination of 196 nm diameter particles with
a standard deviation of 10 nm in the presence of a dilute
population of 530 nm particles with a standard deviation in
particle size distribution of 360 nm where the ratio of large
to small particle number densities is 0.008.

Structure factors for suspensions containing one particle
type are shown in Fig. 5. Here we have extracted an average
structure factor using Eq. �25�. This process is simplified by
using the analytical form factors developed using parameters
shown in Table I. The fits to the hard sphere solutions for
S�q� are quite satisfactory suggesting interactions between
like particles are well approximated by hard core volume
exclusion. The discrepancies at low q for the 196 nm par-
ticles are attributed to the presence of aggregates in these
suspensions. Aggregates blur density fluctuations at length

FIG. 7. �Color online� Binary mixtures were made of �a� 44 and
86 nm particles and �b� 44 and 196 nm particles.

ANDERSON et al. PHYSICAL REVIEW E 73, 031407 �2006�

031407-8



scales larger than the radius of a particle. These effects are
manifested in the structure factor at low q.

B. Electron contrasts

The fitting analysis uses a single adjustable parameter to
set the magnitude of the total absolute scattering intensity for

the single component systems ��i.e. Ii�q�=AiP̄i�q�Si�q�,
where P̄i�q� are determined from the best experimental fit at

low � and Si�q� is determined from the PY solution for
single sized particles at the volume fraction of interest�. This
technique has the advantage of allowing �	e to be estimated
at all volume fractions. The Guinier analysis can only be
applied when Si�q�=1 or when ��0.05. As can be seen in
Fig. 6�a�, our fitting analysis provides consistent estimates of
Ai at all volume fractions for a single particle size distribu-
tion. In Fig. 6�b�, we show that to within a small uncertainty
Ai scales in a linear manner on a particle volume. Contrast
estimates from the two analysis methods are tabulated in
Table II. The two methods are in agreement within the un-
certainty in the measurements.

FIG. 8. �Color online� Experimental scattered intensity ����� and model fits using the A/L model �dots� and the V model �solid lines�
are shown for binary mixtures of 44 and 86 nm particles at indicated volume fractions.
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C. Scattering from mixtures

Two component mixtures were made of the 44 and 86 nm
particles ��=0.51� and the 44 and 196 nm particles ��
=0.22�. Volume fractions of the mixtures explored in this
study are diagramed in Fig. 7. In Fig. 8, we show scattering
intensities as a function of qd2 and �=0.51 for select volume
fraction ratios shown in Fig. 7�a�. The significant changes in
I�qd2� at fixed �=�2+�3 but variable �2 are of interest.
These changes are seen in comparing Figs. 8�a� and 8�b� and
Figs. 8�d� and 8�e�. As �2 is varied at fixed �, the positions

and magnitude of maxima shift substantially. The same is
true in Fig. 9 where we present scattering from mixtures
where �=0.22.

Also shown in Figs. 8 and 9 are predictions of the A/L and
V models. As can be seen, the V model more accurately
captures both qualitative and quantitative features of the ex-
perimental results. This can be attributed to the V model’s
more accurate account of scattering interferences between
particles. The V model’s better agreement is seen particularly
around the second scattering peak. Discrepancies around the
second peak between the A/L model and experiment appear
to grow as � is reduced. We believe that we have correctly
implemented the A/L model and the V model because our
implementation matched results presented in Ashcroft and
Langreth �23� and van Buerten and Vrij �29�. We note that
the discrepancies found at low q between model and experi-
ment in Fig. 9 are a result of a low volume fraction of poorly
characterized aggregates. For these comparisons the particle
form factor used for the 196 nm particles does not include
the low population density of 530 nm particles. This was
done to allow strict comparison of predictions of binary mix-
ture scattering models. One consequence, however, is that we
do not anticipate either model to capture the low q scattering
of the suspensions of 196 nm particles.

Figure 10 presents the scattering from a ternary mixture
of 44, 86, and 196 nm particles with �1=�2=�3=0.15 as a
function of qd1, where d1=196 nm. Again the agreement be-
tween predictions of the V model and experiment is astound-
ing for qd1�2�. At smaller values of qd1, the effect of the
poorly characterized aggregates becomes important.

In all fits shown in Figs. 8–10, P̄i�q� and n�d� have been
calculated from the data given in Table I. In addition, abso-
lute scattering predictions used electron density contrasts that
are within ±10% of the average value shown in Table II. The
apparent variation in �	e can easily arise from uncertainties
in the sample thickness which is required to convert between
detector counts per second to absolute scattering intensity.

The effect of the aggregates on total scattering can be
included using the V model for a ternary mixture where we
include a third component of d3=530 nm, �3=360 nm, and
�3=0.01 for a binary mixture with �=0.22, �1=0.10, and

FIG. 9. �Color online� Experimental scattered intensity �����
and model fits using the A/L model �dots� and the V model �solid
lines� are shown for binary mixtures of 44 and 196 nm particles at
indicated volume fractions.

FIG. 10. �Color online� Scattered intensity ����� for a ternary
mixture of 44, 86 and 196 nm particles is fit using the V model
�solid lines� with three size distributions.
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�2=0.30 corresponding to Fig. 9�b�. As shown in Fig. 11,
this ternary mixture calculation quantitatively captures total
scattering intensity over the measurable scattering range.

V. CONCLUSION

The A/L model and V model both capture the qualitative
scattering behavior of two component mixtures. The V
model was superior to the A/L model for quantitative predic-
tions due to the ease of incorporating the effects of polydis-
persity in particle size and a more accurate method of calcu-
lating interparticle scattering interference. The V model’s
better accuracy is shown at scattering lengths between the
sizes of the two components. The drawback of the V model
is that it does not calculate the partial structure factors. The
A/L model calculates the partial structure factors; yet, total
scattering calculations do not completely match experiment.

The V model is also more practical for data analysis of
multicomponent suspensions. It is less computationally in-
tensive than A/L making possible the extension to multicom-
ponent suspensions. The V model uses Baxter’s approxima-
tion to simplify the direct correlation functions which allows
numerical calculations to be easily performed. Additional
components are incorporated by adding distributions to the
total number density equation. The A/L model is specific to
binary systems. An extension to multicomponent systems is
difficult due to the complexity of the partial structure factor
calculations.
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APPENDIX A: A/L MODEL

The coefficients given by Lebowitz �27� are as follows:

a1 = �−3 �

��1
��	� ,

a2 =
�

��2
��	� ,

�	 = ���2 + �3�1��1 + � + �2� − 3�2�1�1 − ��2�1 + �2

+ ��1 + �1����1 − ��−3,

b1 = −
6

d1
��1g11

2 + 1
4�2�1 + ��2�−3g12

2 � ,

b2 = −
6

d2
��2g22

2 + 1
4�1�1 + ��2�g12

2 � ,

m =
1

2
	�1a1

d1
3 +

�2a2

d2
3 
 .

��i is the volume fraction of particle i and �=�1+�2.�
Radial distribution functions are given by

g11 = 
	1 +
1

2
�
 +

3

2
�2	 1

�
− 1
��1 − ��−2,

g22 = 
	1 +
1

2
�
 +

3

2
�1�� − 1���1 − ��−2,

g12 = 
	1 +
1

2
�
 +

3

2
��2 − �1�	1 − �

1 + �

��1 − ��−2.

The Fourier transforms of the direct correlation functions as
given by Ashcroft and Langreth �23� are

FIG. 11. �Color online� Experimental scattered intensity �����
for the binary mixture in 9�b� is fit using the V model �solid lines�
with a third size distribution to account for scattering from aggre-
gates of the 196 nm particles.
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− n1C11�q� =
24�1

q3d1
3 �a1 sin qd1 − qd1 cos qd1 +

b1

q
�2qd1 sin qd1 − �q2d1

2 − 2�cos qd1 − 2� +
d1m

q2 ��4q2d1
2 − 24�sin qd1

− �q4d1
4 − 12q2d1

2 + 24�cos qd1 + 24�� , �A1�

− n2C22�q� = same as − n1C11�q� but replace �1 → �2,d1 → d2,a1 → a2,b1 → b2, �A2�

− n1
1/2n2

1/2C12�q� = 3�1 − ��3 �x1
1/2x2

1/2

x1 + x2�3a2
sin yq − yq cos yq

yq
3 + 24�

x1
1/2x2

1/2�3

x1 + x2�3 
 sin yq

q4d2
4 ��12�2qd2 cos qd2 + �q2d2

2 − 2�sin qd2�

+
�12

qd2
��3q2d2

2 − 6�cos qd2 + �q3d2
3 − 6qd2�sin qd2 + 6� +

d2m

q2 ��4q3d2
3 − 24qd2�cos qd2 + �q4d2

4

− 12q2d2
2 + 24�sin qd2�� +

cos yq

q4d2
4 ��12�2qd2 sin qd2 − �q2d2

2 − 2�cos qd2 − 2� +
�12

qd2
��3q2d2

2 − 6�sin qd2

− �q3d2
3 − 6qd2�cos qd2� +

d2m

q2 ��4q3d2
3 − 24qd2�sin qd2 − �q4d2

4 − 12q2d2
2 + 24�cos qd2 + 24��

+
a2

qd2
�cos yq	 sin qd2 − qd2 cos qd2

q2d2
2 +

�1 − ��
2�

�1 − cos qd2�
qd2


 + sin yq	 cos qd2 − qd2 sin qd2 − 1

q2d2
2

+
�1 − ��

2�

�sin qd2�
qd2


�� , �A3�

where x1=n1 /n , x2=n2 /n , yq= 1
2q�d1−d2� , �12

=2md2
2�d1−d2�, and

�12 = − 3d2�d1 + d2�	�1g11

d1
2 +

�2g22

d2
2 
g12.

APPENDIX B: V MODEL

Expressions for the terms ��q� and Df�q� are given below.
The interested reader should consult Vrij �25� for a detailed
derivation of the expressions.

��q� = �1 − �3�−4��F11F22 − F12
* F21

* ��F11
* F22

* − F12
* F21

* �� ,

�B1�

where

F11�q� = 1 − �3 + �d3eiX�� ,

F12�q� = �d4eiX�� ,

F22�q� = 1 − �3 + 3�d3eiX�� ,

F21�q� = 1
2 �1 − �3�iq − 3�2 + 3�d2eiX�� .

F��
* is the complex conjugate of F��.

The determinant Df�q� is

Df�q� = − 	 6

�

�1 − �3�−4��f2B2�T1T1

* + �d6�2�T2T2
*

+ 9�d4�2�T3T3
* + �fB d3���T1T2

* + T1
*T2� + 3�fB d2��

��T1T3
* + T1

*T3� + 3�d5����T2T3
* + T2

*T3�� , �B2�

where

T1 = F11F22 − F12F21,

T2 = F21�df BeiX� − F22�fBeiX� ,

T3 = F12�fBeiX� − F11�df BeiX� .

Expressions for additional terms are

Xi = 1
2qdii,

��Xi� = Xi
−1sin Xi ,

��Xi� = 3Xi
−3�sin Xi − Xicos Xi� ,

Bi = Pi�q�1/2 = 3
sin�qdii/2� − �qdii/2�cos�qdii/2�

�qdii/2�3 ,

and f i=dii
3�	e.

Brackets � � denote an average performed over all compo-
nents of the mixture:

�f2B2� = 	�

6

�

i=1

p

nif i
2Bi

2.
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